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We study the thermally assisted relaxation of a directed elastic line in a two-dimensional quenched random
potential by solving numerically the Edwards-Wilkinson equation and the Monte Carlo dynamics of a solid-
on-solid lattice model. We show that the aging dynamics is governed by a growing correlation length display-
ing two regimes: an initial thermally dominated power-law growth which crosses over, at a static temperature-
dependent correlation length Ly~ T3, to a logarithmic growth consistent with an algebraic growth of barriers.
We present scaling arguments to deal with the crossover-induced geometrical and dynamical effects. This
analysis allows us to explain why the results of most numerical studies so far have been described with
effective power laws and also permits us to determine the observed anomalous temperature dependence of the
characteristic growth exponents. We argue that a similar mechanism should be at work in other disordered
systems. We generalize the Family-Vicsek stationary scaling law to describe the roughness by incorporating the
waiting-time dependence or age of the initial configuration. The analysis of the two-time linear response and
correlation functions shows that a well-defined effective temperature exists in the power-law regime. Finally,
we discuss the relevance of our results for the slow dynamics of vortex glasses in high-7,. superconductors.
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I. INTRODUCTION

Disordered elastic manifolds play an important role in a
variety of physical systems. Growing surfaces,! interfaces in
domain growth phenomena and phase separation,” and
cracks in brittle materials® are usually viewed as elastic ob-
jects. Interesting one-dimensional realizations are polymers*
and vortex flux lines in type-II superconductors.’ While
polymers can wrap, vortex flux lines are preferentially di-
rected along the applied magnetic field.

A number of systems involving one-dimensional elastic
manifolds display glassy features. An ensemble of interact-
ing polymers forms a polymer melt that undergoes a glass
transition.* The competition between vortex repulsion and
their pinning to randomly located impurities also leads to
glassy phases in superconductors.’ While in the former case
disorder is self-induced, in the latter the effect of the impu-
rities is mimicked by a quenched random potential.

The relaxation dynamics of a model of layered high-T.
superconductors was recently studied in Ref. 6. The mag-
netic vortices are considered to be directed along one direc-
tion and they can move in two transverse directions. Conven-
tionally, this is a (d=1)+(N=2)-dimensional model. The
dynamics following a rapid quench from the liquid state to a
set of control parameters in which the equilibrium state is
expected to be the so-called “vortex glass™ was monitored.
By using numerical simulations a slow out of equilibrium
relaxation typical of glasses was found. In this system, dif-
fusive aging of the averaged two-time roughness, (w?), and
displacement, (B), was observed. The aging was character-
ized by a multiplicative scaling form €*¢(t,,)f,2 5[ €(t)/€(t,,)],
where €(r) is a growing characteristic length. The scaling
functions f,2 and f5 are different but the exponent { does not
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depend on the observable (w? or B). Besides, the system of
interacting lines was perturbed in order to compute the inte-
grated linear response, and a diffusive aging was also found,
characterized by a scaling function of the type
€(1,)f [€()/£(1,)] with the same exponent { and growing
length €(¢) found for the unperturbed two-time observables
(roughness and displacement). It was also shown that corre-
lation and response functions can be related by a modified
fluctuation-dissipation relation after removing the “diffusive”
contribution, i.e., the factors €%4(¢,). This violation of the
fluctuation-dissipation relation can be characterized by a fi-
nite effective temperature, Teﬁ~.7'8 Furthermore, within the
time window that was numerically explored, the growing
length €(¢) is well described by a power law, €() ~t'/Z. This
could well be a preasymptotic regime after which the grow-
ing length crosses over to the expected activated dynamics
logarithmic growth [when disorder free-energy barriers scale
as A(L)~LY with >0]. It is worth mentioning that al-
though aging in high-° and low-T, (Ref. 10) superconductor
samples has been reported in the literature, a detailed com-
parison to the results listed above remains to be done.

The model system used to describe vortex lines in high-
temperature superconductors contains several contributions
coming from different energy scales. The main contributions
are the elastic energy of the individual lines, the nonlinear
terms in the elastic energy, the interaction between the lines,
and the quenched random pinning potential. It is clearly im-
portant to establish whether all the above listed contributions
to the energy are necessary to get such aging behavior or
whether similar features arise when some of the terms—
nonlinear contributions to the elasticity, interactions between
the lines, or random potential—are switched off. We review
below the out of equilibrium dynamics of related models
with and without this type of interactions.
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The first studies of the out of equilibrium dynamics of
directed elastic manifolds in a quenched random environ-
ment focused on mean-field models in which the transverse
space is infinitely dimensional, N— o, each transverse coor-
dinate has infinite length, M — o, and the manifold has finite
dimension, d, and infinite length in all directions, L—o.!!
This model includes only two of the energetic contributions
listed above, viz., elasticity and quenched disorder, and ne-
glects nonlinear terms and interactions between the elastic
objects. A dynamic phase transition separating a liquid (high-
temperature) phase from a glassy (low-temperature) one was
found for all internal dimension d including d=0.!" Different
aging dynamics characterize the low-temperature phase de-
pending on the short or long-range character of the random
potential correlations. In both cases the aging regime lasts
forever (after having taken the N—o, M—o, and L—
limits): there is no multiplicative factor €>¢(¢) in the averaged
two-time observables. For short-range correlated potentials
the displacement, roughness, and linear responses scale as
furp [€(0)/€(t,)] and a single finite effective temperature
exists.

Soon after Barrat'? and Yoshino studied a solid-on-
solid (SOS) model of a single directed elastic line relaxing
with Monte Carlo (MC) dynamics on a disordered substrate
with one (N=1) transverse direction. This system models
elasticity in a rather extreme way, using a hard constrain, and
includes quenched randomness. There are no interactions be-
tween different lines in this model. These authors focused on
the very long length limit in an effectively infinite box (M
>[L>a with a as the lattice spacing) and found that this
lattice model has a similar averaged dynamics to the one
found later in the vortex glass® below a crossover tempera-
ture. The relaxation is slow, and the global displacement and
linear response show nontrivial diffusive aging with multi-
plicative scaling. The characteristic length scale also appears
to be a power law of time within the numerical time window
and the exponents z and a={/z are temperature and disorder
strength dependent with the same qualitative trend as in the
fully interacting case. More recently, we focused on the
analysis of the averaged and fluctuating two-time roughness
of such solid-on-solid lines with finite length, L<.'> On the
one hand, we found that the aging regime stops and crosses
over to saturation of the two-time roughness and free diffu-
sion of the displacement at a characteristic value of the time
delay, Ar=r-t,=t,, which grows with the length of the line
and smoothly depends on other parameters in the model. The
saturation of the two-time roughness is well described by a
generalization of the equilibrium Family-Vicsek scaling.'®
On the other hand, the two-time roughness fluctuations are
highly nontrivial but can be characterized with a relatively
simple argument by a scaling function.

The numerical solution to the Langevin equation for free
lines in N=2 transverse dimensions® and, especially, the full
analytic solution to the Langevin dynamics of finite
Edwards-Wilkinson (EW) elastic lines'” in one transverse
dimension'®'? (N=1) had also been considered, without tak-
ing into account interactions, nonlinear terms, and quenched
randomness. The results suggested that not even disorder is
necessary to obtain similar averaged and fluctuating aging
dynamics of fully relaxing quantities. The aging scaling and
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saturation phenomenon of the averaged two-time roughness
follow the same scaling laws as above with growing length
£(t)~1t"* and temperature-independent exponents z=2,
=1/2, and a={/z=1/4. However, the noise-averaged linear
response is stationary in this “quadratic” model. When it
comes to analyzing fluctuations other differences appear. The
distribution of the two-time roughness satisfies a similar
scaling law as in the disordered problem although with a
rather different scaling function and the linear response sim-
ply does not fluctuate.

The effect of nonlinear terms has been considered by
Bustingorry?®?! who analyzed the relaxation dynamics of
“clean” finite length (L <) Kardar-Parisi-Zhang (KPZ)
lines?> in N=1 transverse dimensions. In this work correla-
tions were analyzed in detail and undergo diffusive aging
with the KPZ exponents ¢, «, and z. The two-time and length
scaling of averaged quantities and the scaling form of the
probability distribution functions proposed in Ref. 15 were
thus confirmed.

Finally, once the elastic lines are allowed to wrap, biologi-
cally motivated dynamic problems can also be addressed. A
recent study concentrates on the effects of confinement on
the out of equilibrium relaxation of a single polymer chain in
two dimensions,?® a problem of relevance for cellular mod-
eling. Another study analyzes numerically the effect of ran-
domly applied forces on an ensemble of interacting polymer
lines, focusing on out of equilibrium properties of active
matter.2* There is, certainly, much room for further investi-
gations in the biological context.

In this paper we return to the problem of the relaxation of
directed elastic lines in the presence of quenched random-
ness. Interactions among different lines and nonlinear terms
are not considered here. Our aim is to complete the analysis
of the averaged two-time observables. In order to compare
with previous results and to extract the universal behavior we
treat two models in parallel: the Monte Carlo dynamics of
the disordered solid-on-solid model'>'* and the Langevin
dynamics of the disordered Edwards-Wilkinson equation in
(1+1) dimensions. In Sec. II we define these models and we
describe the numerical method and two-time observables on
which we focus.

We first study in Sec. III the (correlation) growth regime
of the considered models as is typically analyzed in nondis-
ordered systems.l Within this context, the notion of a char-
acteristic crossover length between thermally and disorder-
dominated regimes arises naturally. Besides, we consider in
detail the growth with its roughness and dynamic exponents
and we confirm the existence of a crossover from power law
to logarithmic growth that is, however, only observed for
sufficiently large lines. Second, in Sec. IV we focus on the
aging behavior of the averaged dynamics of correlation and
linear response functions for different initial conditions. Spe-
cial attention is paid to two-time scaling and finite-size and
finite- time effects. Third, we expose in Sec. V some scaling
arguments aimed to explain many of the crossover-induced
effects observed in the numerical results. Finally, in Sec. VI
we present our conclusions.

II. MODELS

In this section we introduce the models and the numerical
methods used to study their relaxation.
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A. Lattice model

A discrete model of a one-dimensional directed elastic
object represents the line as a lattice string of length L di-
rected along the y direction.'>"> The line can move trans-
versely along the x direction on a rectangular square lattice
of transverse size M=10*>L%3 ensuring the existence of
many nearly equivalent quasiground states. The line seg-
ments, x(y) (y=1,...,L), obey the restricted SOS rule |x(y)
—-x(y-1)|=0,1. A quenched random potential V taking inde-
pendent values on each lattice site is drawn from a uniform
distribution in [-1,1]. We use 10°-107 realizations of the
quenched randomness depending on the value of L. At each
microscopic time step we attempt a move of a randomly
chosen segment to one of its neighbors restricted by the SOS
condition and we accept it with the heat-bath rule. One
Monte Carlo step is defined as L update attempts. We use
angular brackets to indicate the average over thermal noise
realizations. We choose two types of initial conditions: equi-
librium at high temperature obtained after evolving a random
initial condition during a sufficiently long-time interval at
high temperature and equilibrium at zero temperature.

The lattice model has no finite elastic energy. Elasticity is
modeled in an extreme way; in the absence of disorder all
configurations have equal vanishing energy but the displace-
ment between neighboring bonds is bounded to —1,0,1 lat-
tice spacings.

The control parameters are temperature, T, and the disor-
der strength, V,=\[V?],. Here and in what follows we use
square brackets, [+ -]y, to indicate an average over quenched
randomness. The Monte Carlo rule implies that the dynamics
depend only on the ratio between these parameters, V,;/T. In
the simulations shown here we fixed V,=1/3. In the follow-
ing we use adimensional time, space, and energy scales.

B. Continuous model

The SOS model is easy to simulate but it is not simply
recovered as a limit of better-known continuous problems
such as the KPZ equation?*?? or the vortex line model® in
which elasticity is modeled in a more realistic way. For this
reason we also study the disordered EW line.!

The disordered EW equation'” for a scalar field x repre-
senting the height of a surface over a one-dimensional sub-
strate parametrized by the coordinate y (a one-dimensional
directed interface) is

Yx(y,1) = cdx(y.1) + F,Lx(y,0)]+ hlx(y, )]+ &y.1),
(1)

where £ is a Gaussian thermal noise with (&(y,7))=0 and

(Ey.0&(y".1')) =29T Sy - y") ot = 1'). ()

The parameter c is the elastic constant, vy is the friction co-
efficient, T is the temperature of the thermal bath (in energy
units), and (---) is the average over the white noise &, i.e.,
the thermal average. The Boltzmann constant has been set to
1, kg=1. The term h represents the effect of a perturbing field
that couples linearly and locally to the height, —A(y,?)x(y,1).
One can also consider other types of perturbation that couple
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to more complicated functions of the height as defined in
Sec. II D. The random pinning force F,[x(y,)]==d,V(x,y)
represents the effect of a random-bond disorder described by
the potential V(x,y), whose sample-to-sample fluctuations
are given by

[(V(x,y) = V(' y)) ]y = 8y =y )Rx-x),  (3)

where R(u) stands for a short-ranged correlator along the x
coordinate with range r;. The continuous random potential is
modeled by a cubic spline passing through M regularly
spaced uncorrelated Gaussian number points.>> We adimen-
sionalize Eq. (1) by using r; as the unit of distance in the x
direction, yry as the unit of time, and V|, as unit of energy/
temperature. The unit of distance in the longitudinal direc-
tion y can be conveniently taken as the layer spacing s of the
numerically discretized Laplacian (such a choice is natural
when modeling a layered material such as a high-T,. super-
conductor with an external magnetic field applied perpen-
dicular to the oxide planes). In these units, the friction and
elastic coefficients are equal to 1, leaving only two indepen-
dent parameters in the model: the adimensionalized elastic
constant v:crf/s2 and the adimensionalized temperature
T/V, (from now on, we use T for T/ V). Finally, by choosing
v=1 we focus exclusively in the temperature dependence for
a fixed disorder.

We use a finite-difference algorithm to integrate the par-
tial differential equation in which the first and second order
partial derivatives are discretized in the usual way (see Ref.
20 for more details on the numerical technique). We typically
simulate lines with lengths L=64,256,1024. The time step is
t5=0.01. We use 10° noise realizations to evaluate the two-
time averaged correlations and responses.

Note that in the continuous model each nonstrictly flat
configuration has a finite elastic energy, while in the lattice
model all configurations have the same vanishing elastic en-

ergy.

C. Quenched randomness

The kind of quenched disorder used in both models is of
the “random-bond” type in the sense that, for a domain wall
described by our elastic interface model, it does not break the
symmetry properties of the corresponding order parameter.?
This implies that the two-dimensional disorder potential lo-
cally couples to the interface position and that R(«) in Eq. (3)
saturates to a constant for large distances. The way we gen-
erate the disorder corresponds to a short-ranged function
R(u). The effect of long-range correlated randomness has
been studied in mean-field elastic manifold models'' but we
do not contemplate it here.

D. Observables

We study the relaxation after two types of rapid changes
in the control parameters. The first protocol, and the more
usual one, describes a quench from high to low temperatures.
After equilibration at high T the system is quenched to a low
value of 7. The second protocol, less usual, consists in first
equilibrating the sample at zero temperature (i.e., starting in
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its ground state), T,=0, and then heating the sample to a
higher temperature. In both cases, the line is allowed to relax
from the quench occurring at time #=0 until a waiting time z,,
when the quantities of interest are recorded and later com-
pared to their values at subsequent times t>¢,,.

The aging dynamics of elastic lines has been initially
studied in terms of the averaged two-time mean-squared dis-
placement (B)(t.t,,)={[(x(y,1)—x(y,t,))?*],).'>!* The behav-
ior of this quantity is somehow obscured by the motion of
the center of mass. We thus prefer to focus on the roughness
of the lines, a quantity that has been widely used in the study
of interface dynamics' but generalized here to include the ¢
and t,, dependences. The two-time roughness is given by

(000 =7 S G0 - 3D @)
y

where Sx(y,1)=x(y,r)—x(z) accounts for the displacement of
the yth line segment relative to the center of mass, X(7)
=L_12y x(y,1).

The two-time structure factor is defined as'!8

S(t.1,) = L{{le,(0) = ,(1,) 1),
Le, (1) = 2 [x(y,1) = (1) Je ™, (5)

where g,=2mn/L with n being an integer number.

Further insight into the dynamics of out of equilibrium
systems is given by the linear response function. The latter is
defined by applying a random time-independent force at a
time #,, on a replica of the system and by computing how this
one departs from an unperturbed one evolving with the same
thermal noise. Concretely, the energy contribution of a field
conjugated to the displacement with respect to its mean value
is

H™ ==, [x(y,1) - 5(0)]s(y) 6(AL). 6)

s(y)=*=1 with equal probability, {({(s(y)))=0, and
{s(y)s(y")=0;, (Ref. 27) with ({---)) denoting the aver-
age over the perturbing field distribution. # is the intensity of
the perturbation. The associated linear response function is

W) =S (@00 - S0 ()
y

Henceforth (- - -) indicates the average over the thermal noise
and the s(y) distribution.

In equilibrium the averaged linear response is related to
the averaged spontaneous fluctuations of the corresponding
observable by the model-independent fluctuation-dissipation
theorem (FDT) which states

(W) (A7) = 2T(x)(Ar) (8)

(the Boltzmann constant has been set to 1, kz=1), where the
At argument implies stationary dynamics. In a system relax-
ing out of equilibrium this relation does not necessarily hold.
In a number of glassy systems one can define an effective
temperature’ from the modification of the above relation. In
the aging regime of elastic lines in disorder media the FDT is
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violated and one constructs the modified FDT,%8:13

<W2>(t’tw) = 2Teff(t’tw)<)(>(t’tw)’ (9)

where T measures to what extent FDT is violated and has
been also shown to behave in many situations as a bona-fide
(nonequilibrium) time-scale dependent temperature in a ther-
modynamic sense.® The two-time dependence of the effec-
tive temperature is here kept general. It turns out that in
models with multiplicative scaling, as the one discussed
here, once the factors €%(¢) have been taken into account, the
redefined effective temperature approaches a constant value
(see Sec. IV C and Refs. 6, 12-14, 18, and 27).

E. Dynamic crossover

In (1+1) dimensions there is no phase transition to a
high-temperature “free phase.” Disorder is always relevant
for an elastic string and fluctuations are always dictated by
the disorder at the largest length scales. The characteristic
nonequilibrium nonstationary glassy phenomenon then ap-
pears as a size-dependent dynamic crossover.!2"13:18-20 For
all observation times, 7,,,, which are longer than a size, dis-
order strength, and temperature-dependent equilibration
time, f,,, the system reaches equilibrium. Instead, for 7,
<1,, the relaxation is nonstationary and thus occurs out of
equilibrium as demonstrated by two-time correlations and
linear responses that age and violate fluctuation-dissipation
theorems. The equilibration time 7., increases by increasing
the size L of the line, by decreasing the temperature 7, and
by increasing the quenched disorder strength V.

In finite systems however (which can be realized experi-
mentally as discussed in Sec. VI), strong enough thermal
fluctuations can induce a finite-size crossover at a size-
dependent crossover temperature 7T,,(L). At high tempera-
ture, such that 7>T,,(L), disorder is effectively washed out,
the equilibration time is relatively short, and the line behaves
as the clean EW one at high temperature. At equilibrium the
FDT holds, and the exponents (defined and discussed below)
are the ones of the clean EW line, a=1/4, {=1/2, and £
=2. At lower temperatures, T<T,,(L), the equilibration time
is usually longer than the observation time and the dynamics
remains nonstationary.'>"> Thermal fluctuations induce in
this case a geometrical crossover at a temperature-dependent
length scale Ly, separating a short length-scale roughness
regime described by the “thermal” exponent {; from a large
length-scale roughness described by a “disorder” exponent
{p. Determining this geometrical crossover as a function of
temperature is therefore important for determining the dy-
namic crossover in a finite system since T,,(Ly)=T.

III. GROWTH AND SATURATION

In this section we recall the main tools and concepts used
to analyze the evolution of the conformational properties of
elastic manifolds and we generalize them to take into ac-
count the effect of the waiting time. This leads us to present
the temperature dependence of the crossover length scale L;.
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A. Roughness

1. Comparison to the initial condition

Traditionally, the dynamics of elastic manifolds has been
classified in universality classes according to the behavior of
the two-time roughness [Eq. (4)] evaluated at 7,,=0, the ini-
tial time, and using a flat initial configuration, x(y,0)=x,."1¢
The waiting time being identical to zero all two-time observ-
ables depend on At=t when compared to the initial condi-
tion. Initially the roughness increases as a function of Az, and
at a characteristic time ¢,(L) reaches saturation at an
L-dependent value, (w2). This behavior is encoded in the
Family-Vicsek scaling'® that, in full generality, can be ex-
pressed as

(W (Ar) ~ g(Ar), (10)

1.~ fL), (11)

(w2) = lim (w?)(Ar) ~ h(L), (12)
Ar>t,

with h, g, f as three monotonic functions. Consistency at
At=t, requires h=fog. In the usually discussed space-time
scale-invariant cases in which all functions are power laws
one has

W(Ar) ~ Are, (13)
t,~ L%, (14)
(wly ~ L%, (15)

where « is the growth exponent, z is the dynamic exponent,
and ¢ is the roughness exponent. Consistency implies that the
three exponents are related by

za=/_. (16)

The values of the exponents are well known in a number of
cases. For the EW elastic line the exponents can be analyti-
cally computed and one finds that a=(2-d)/4, z=2, and ¢
=(2-d)/2 for d=2. For the nonlinear KPZ elastic line the
exponents are known only numerically for general d. In (1
+1) dimensions, however, they can be computed analytically
and a=1/3, z=3/2, and {=1/2.

In the presence of quenched disorder the dependence of
the asymptotic roughness (w?) with the length of the line
undergoes a crossover. For lines that are shorter than a tem-
perature and disorder strength dependent value L; the behav-
ior is controlled by thermal fluctuations and relation (15)
holds with {={7, the thermal roughness exponent. This ex-
ponent is the one corresponding to the EW equation, and
thus {;=(2-d)/2 in general and (;=1/2 in our
(1+1)-dimensional case. In this thermally dominated scale,
the dynamics is expected to be “normal” in the sense that
lengths and times should be thus related by power laws of
types (13)—(15) with the exponents linked by Eq. (16).

For lines longer than Ly, the roughness is dominated by
quenched disorder and one has that Eq. (15) still holds
though with a different value of the roughness exponent, ¢
={p. The disorder-dominated roughness exponent {j, is the
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one characterizing the geometry of the ground state configu-
rations, and it is expected to satisfy {,,> {; in general.?® In
(1+1) dimensions one has {,=2/3.

Once quenched disorder is present, the time evolution is
expected to be driven by activation over free-energy barriers.
If they scale as U(L) ~ L, the Arrhenius law leads to a loga-
rithmic relation between equilibrated lengths and times that
implies #(€) ~ e/ LT with Y and Ly as some characteris-
tic energy and length scale, respectively. One might then
expect

(W (A1) ~ In®m At, (17)
which for consistency implies

o, =28p. (18)

All exponents cited above are temperature independent.
Some glassy systems do, however, present temperature-
dependent exponents asymptotically.”®-3! Whether this be-
havior can occur in our system is a delicate issue, which we
discuss in Sec. V.

2. Comparison to an aged configuration

In simple cases in which equilibrium is relatively rapidly
reached the initial condition should be irrelevant after the
equilibration time. The same relaxational behavior is then
expected, independently of the waiting time #,, and the initial
condition. The roughness should only depend on the time
difference At=r—t, and the same functional forms should
characterize growth and saturation. In an out of equilibrium
relaxation relatively soon after preparation the growth re-
gime acquires a waiting-time dependence and relations
(10)—=(12) might be generalized.

For each waiting time the two-time roughness presents
two regimes as a function of Az: it first grows until crossing
over at 7,(L) to saturation at a At independent value. For high
working temperature after a short transient the memory of
the initial condition disappears, and the roughness is well
described by the Family-Vicsek scaling. For low working
temperatures the waiting-time dependence remains. For long
lines the crossover time is long enough to see aging behavior
in a sufficiently long-time window, such that we can describe
it with a scaling form. Before saturation the roughness does
not depend strongly on the size of the line (for sufficiently
long lines) and the curves can be scaled as

o [ L) )
2 ) ~ 2% 2 . 1

WA(t,) ~ 1,7 >( ) (19)

This scaling form approaches a stationary regime in which

WH(t,t1,) ~ €*(A1) in the limit Ar> ¢, if (72)(u)~ u?* for

u>1. For even longer time delays such that €(Az) — L one

finds saturation at (w?)(¢,z,) — (w2)~ L*¢, which might in-

deed contain a f,-dependent prefactor, as in the clean EW
case.'®

The out of equilibrium regime exists without the need of

quenched randomness. We showed in Ref. 18 that the rough-

ness in the simple EW equation satisfies scaling form (19)

when the system is let evolve from an out of equilibrium

initial condition and the waiting-time dependence is kept ex-
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FIG. 1. (Color online) Structure factor in the continuous EW
line in a random environment for 7,=5 and two working tempera-
tures, T=0.5 (circles) and T=0.8 (squares), with 7,=0. The data
show the thermal regime at very large wave vector, a crossover to a
disorder-dominated regime upon decreasing the wave-vector value,
and, finally, a saturation regime demonstrating that the growth
length, €(7), is shorter than the system size, L. In the bottom panel
the structure factor is scaled by ¢ in order to highlight the differ-
ence between the two roughness exponents.
plicit. The length scale € grows as €(¢) ~¢">. A similar scal-
ing was shown numerically in Ref. 20 for the (1+1) KPZ
model with €(f) ~#*3. In Sec. IV we discuss the scaling of
Eq. (19) for the disordered model.

The analysis of the saturation of the two-time roughness
should, in principle, yield the thermal and disorder-
dominated values of /. Computing £ from (w?2) is, however,
numerically heavy since one needs to simulate lines with
different lengths and then extract the scaling behavior. In
Ref. 15 we tried such a scaling analysis but we did not reach
the regime in which {=¢;,=2/3 [see Fig. 1(d) in this refer-
ence]. A more convenient way of getting { is to study the
two-time structure factor,! as we explain below.

B. Structure factor

1. Roughness exponents

The thermal, {7, and disorder, {j, roughness exponents
can also be extracted from the analysis of the structure factor
defined in Eq. (5). Working with the structure factor is con-
venient since it is sufficient to simulate a long chain and then
extract the L dependence from the wave-vector dependence.!
Indeed, the roughness is simply related to the structure factor
as

<W2>(t’tw) =L_l E <Sn>(t’tw)’ (20)

n=—o

and this implies that the dynamic scaling [Egs. (10)-(12)]
(for 1,,=0) is equivalent to
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(St =0)=5g,)glg,(1)] (21)

with S°? as the equilibrium wave-vector dependent structure
factor and g(u) ~u?*?* for u<<1 and g(u) — const for u>1,
with d as the internal dimension of the manifold (d=1 for the
directed line). These limits for the function g(u) ensure, re-
spectively, the equilibrated steady geometry and the memory
of the flat initial condition. In the case of power-law scaling
Eq. (21) becomes

(S(t,1,=0) = g, “glq,r'"]. (22)

In the out of equilibrium relaxation process we are inter-
ested, (S,) depends on two times ¢ and 7, The generalized
scaling form then reads

(St.1,,) = 5°(q,) Gl g, £ (1),q,£(2,)], (23)

which reduces to Eq. (21) for ¢,,=0 and to a similar form for
q,£(t,,)>1 for all n, recovering stationarity in the very long
waiting-time regime. For fixed #,, and ¢ we can study the
dependence of (S,) on g,. If the aim is to determine the
values of the roughness exponent the ideal choice would be
to use a very long Ar=t—1t,,>1,, and plot (S, for several ,,’s
as a function of ¢g,. This construction is to be compared with
Fig. 2(b) in Ref. 18. In presence of disorder the construction
should have a broken straight-line form with two exponents,
—(1+2{7p); the thermal one, {7, characterizing the behavior
at short length scales, ¢, > g, and the disorder one, {p, char-
acterizing the behavior at long length scales, ¢, <<gr. The
breaking point g defines a characteristic length Ly~ 1/¢g7
which should depend on 7 and we shall discuss and evaluate
its precise temperature dependence in Sec. III B 2. In an in-
finite (1+1)-dimensional system disorder always dominates
the fluctuations at very long length scales. However, in a
finite system of length L once Ly=L all the system is char-
acterized by thermal fluctuations and the value of Ly is thus
crucial.

Studying the wave-vector dependence of the structure fac-
tor is thus a convenient way to determine the roughness ex-
ponents, {rp; we hence expect to improve the values shown
in Fig. 1(d) in Ref. 15. We studied the 7,,=0 structure factor
in the continuous disordered EW line. The general behavior
described in the previous paragraphs is shown in Fig. 1 for
working temperatures 7=0.5 and 7=0.8. Note that the satu-
ration of the structure factor at very small wave vector bears
the same information as the fact that the roughness (w?) has
not yet saturated at the longest time shown in Fig. 1. It
means that the growing correlation length has not reached
the size of the system, €(¢) <L. The crossover from the ther-
mal, {7, to the disorder, {j, roughness exponents is clear,
with the expected values {7=1/2 and {p=2/3 confirmed.
Note that the top panel in Fig. 1 shows the raw data, while
the bottom panel shows the structure factor multiplied by ¢?,
which allows us to better observe the crossover region and
the difference between the two exponents.

2. Crossover length scale Ly

The analysis of the structure factor also allows us to
evaluate the temperature and disorder strength dependence of
the crossover length Ly (or wave vector ¢7) and compare it to
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previous numerical'* and analytica studies.

The temperature-dependent crossover length L, separat-
ing the saturation regime characterized by the thermal and
disorder exponents {; and {, should be observable as a
temperature-dependent crossover wave vector gr in the
structure factor. In order to access it one then needs to use a
sufficiently long-time delay in such a way that the second
factor saturates to g(u)— const. In this way, we dynamically
determine the crossover length Ly, which can be related to
information about the static structure of the system, as ex-
posed below in Sec. V.

The crossover length and the crossover wave vector are
expected to scale with temperature as L;~T"¢ and
gr~ TV, with ¢ defining an exponent that we shall obtain
below using a variety of arguments. The characteristic length
scale Ly~ 1/¢gy should increase with increasing temperature
(¢>0), indicating that thermal fluctuations become more
and more important.

A simple new “matching” argument to obtain the ¢ expo-
nent relies on the fact that the average fluctuations at large
enough length scales (g, <gy) are not expected to depend on
the working temperature, in contrast with the short length-
scale ones, and that the quasiequilibrated geometry has the
same roughness exponents than in equilibrium. This is in-
deed confirmed in our numerical simulations, as can be ob-
served comparing the two sets of data in Fig. 1. We will use
this observation as a main input for the scaling arguments in
Sec. V. Let us assume that a weak temperature dependence is
permitted, i.e., (Sq>~a(T)q;(1+2§D) for g,<qr. while (S,)
~Tq;(l+2§T) for q,>qr. Matching the crossover between
these two regimes at g one obtains

|: T :| =1[2(&p=Ep)]
~ | — . 24
qdr a(T) (24)

Using a(T)~a yields gy~ T "2=] and ¢p=2({p—-¢;).
With simulations of the discrete model Yoshino found ¢
=1/3,'"* in agreement with this result since for our one-
dimensional case ¢p=2({p—{7)=2(2/3-1/2)=1/3.

This simple scaling argument gives the exponent ¢ in
terms of static roughness exponents. It should be noted that it
is a consequence of two main facts: (i) the average structure
factor becomes independent of 7 for small ¢, i.e., our nu-
merical results support a(T)~a, and (ii) the averaged
quasiequilibrated structure factor is identical to the one at
equilibrium. This states the relation between statics and dy-
namics though we are strictly studying a nonequilibrium
problem.

A different prediction for the exponent ¢ comes from an
order-of-magnitude argument. If one assumes that the char-
acteristic free-energy barrier, A(L), associated to the length
scale Ly should be the thermal one,

L-\¥
Y(—1> ~ kyT, (25)
Ly

one finds
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FIG. 2. (Color online) The value of the wave vector g signaling
the crossover between the thermal and disorder regimes at different
working temperatures. The temperature dependence is consistent
with the expected g~ T3 power law [see Eq. (24)].
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If Y and L, are independent of temperature, Ly~ T"% and
¢=1. Yoshino used this kind of argument with the free-
energy barrier replaced by the sample-to-sample fluctuations
of the free energy, an assumption that was tested in Ref. 28
for low temperatures. By replacing ¢ with the energy expo-
nent 0 one gets ¢p=i=~0 (#=1/3 in d=1)."* This argument
assumes that the scale Ly is the onset for thermally activated
motion, making a connection between the dynamics and the
averaged static geometry of the line.

Nattermann et al.?® predicted ¢p=2({z—{;)=1/5 by using
{r=[3-(d+N)]/2=1/2, the thermal exponent, and =[5
—(d+N)]/5=3/5, the Flory roughness exponent, in d=N
=1. To get this result these authors defined Ly as Hgyi(Ly)
~ H,~ kgT by treating the disorder energy H g, as a pertur-
bation of the elastic Hamiltonian H,, for short length scales
compared to Ly . Since interface fluctuations at length scales
smaller than L; are expected to be Gaussian and nonrenor-
malized, they assumed that Flory argument should give the
correct scaling behavior for Hgy, at these scales. Therefore,
Flory exponents should appear in the definition of L; rather
than the exact roughness exponent {=2/3. Remarkably the
same result ¢=1/5 was obtained subsequently by several
authors>*? by a simple estimation of the thermally smoothed
pinning energy. Moreover, the more rigorous Gaussian varia-
tional method applied to this problem was recently found to
yield the same exponent that is obtained with the simple
Flory argument.*?

The crossover between the thermal and the disorder re-
gimes we find in the #,,=0 structure factor depends, as pre-
dicted, strongly on temperature. For 7=0.5 and T=1, for
instance (using Ly=2m/qy), we get Ly(T=0.5)=6 and
LAT=1)=45, respectively. In Fig. 2 we show the tempera-
ture dependence of L; extracted from the 7,,=0 structure fac-
tor at different working temperatures. Our numerical results
of the disordered EW line are thus compatible with ¢=1/3
in agreement with the first two exposed arguments and Ref.
14 [see Eq. (24)], but it rules out the value 1/5 given in Refs.
5, 26, and 32. Interestingly, our results are consistent with the
general prediction by Nattermann ef al., ¢=2({z—{y), only
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FIG. 3. (Color online) Logarithmic fit of the roughness relax-
ation of the elastic string with 7,=0. All the curves correspond to
the same initial temperature 7,=5 and different quench tempera-
tures 7=0.5, 0.7, 0.9, 1.1, and 1.3 from lower to upper curves.
Circles are raw data and blue continuous curves are the fitted
functions.

if we replace {r=3/5 by {=2/3. This yields indeed the same
relation that follows Eq. (24) which implies, at the same
time, ¢= 6, where the @ is the energy static exponent. Our
results thus clearly prompt for a re-examination of the differ-
ent arguments given so far. In this respect in Sec. V we
provide minimal matching arguments based on numerical
evidence which explain several of our results and can be thus
used as a benchmark for a more refined theory.

3. Growing length: Logarithmic growth from t,,=0 measurements

At high temperature, T>T,,(L), equilibrium is quickly
reached, disorder is irrelevant, and one recovers stationary
dynamics with the clean EW temperature-independent values
a=1/4, {={;=1/2, and z=2. At low temperature one has to
distinguish between the thermal and disorder regimes and
analyze the width of the crossover region.

We shall first take #,=0 and compare with the results
obtained by Kolton et al.3* (see also Ref. 35). These authors
showed, by studying the evolution of the structure factor of
an elastic line in random media from a flat initial condition
and using ¢,=0, that the characteristic growing length
crosses over from a power-law dependence €(z) ~t'/? typical
of the clean EW case to a logarithmic law, £(¢)~ (In £)"¥
with #~0.49 (see Fig. 2 in Ref. 34). The exponent ¢ char-
acterizes the scaling of the barriers at large scales, A(L)
~LY. Kolton et al. expected =0, with 6 as the exponent
characterizing the free-energy cost of an excitation of length
L, AF(L)~L" The value of  is known exactly for d=N
=1, #=1/3, and Kolton et al.3* ascribed the discrepancy be-
tween the measured growing length, €(¢)~ (In1)"/%4, and
their expectation, €()~In? ¢, to strong logarithmic correc-
tions.

If the structure factor scales as in Eq. (21), the roughness
scales as

WﬂﬂAﬂ~t[dwf“”gﬂqﬂAﬁ]~%ﬂqAﬂ. (27)

Using a long line, L=256, as in Ref. 34 we confirm the
logarithmic growth of the roughness for the #,=0 case, as
shown in Fig. 3. Different curves correspond to increasing
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FIG. 4. (Color online) Dependence on the working temperature
of (a) the a;, exponent obtained from the fits in Fig. 3 and (b) the
barrier exponent y=2{p/ay, [see Eq. (18)], with the dotted lines
indicating the suggested values ¢=1/2 and =~ 6=1/3. The tem-
perature of the initial condition is 7;,=5.0. The error bars were
estimated from the dispersion of the exponents when changing the
fitting range.

temperatures, 7=0.5, 0.7, 0.9, 1.1, and 1.3, from bottom to
top. We fit these curves to (w?)(Ar)=A[In(At/B)]%n obtain-
ing the temperature-dependent ay,(7) exponent shown in Fig.
4(a). Now, by simply using the relation (w?)(Ar) ~€>¢(Ar)
~(In Ar)®n,  one recovers the exponent ¢, i.e., ¢
=2{p/ ay,(T), where we assumed that in this regime the dis-
order roughness exponent is the relevant one. We obtain
y(T=0.5)=0.51 which is close to the value ¥=0.49 ob-
tained in Ref. 34.

Recently, Monthus and Garel® conjectured =d,/2 with
d, as the dimension of the surface of the excitation, d,=1 in
our case, which is in very good agreement with our numeri-
cal results at 7=0.5 without any need to advocate for loga-
rithmic corrections. However, the analysis at different work-
ing temperatures presented here reveals that the value of ¢
departs from 1/2 and approaches 1/3 for increasing tempera-
ture [see Fig. 4(b)]. This is in contrary to what is expected
from the argument given in Ref. 36 that is based on the role
of the entropic contribution. Indeed, one would have ex-
pected the value 1/2 to prevail at high temperatures, which is
the opposite trend to what we find in the numerical simula-
tions. We shall show in Sec. V that the temperature depen-
dence of ¢ observed in Fig. 4(b) can be explained as a finite-
size or finite-time effects induced by the crossover.

We have also analyzed the behavior of these exponents
when changing the initial temperature, while keeping #,,=0,
that is to say, using initial conditions thermalized at different
Ty’s. We performed the same fitting procedure keeping the
working temperature fixed to 7=0.5 and varying T,
=2.0,2.5,3.0,3.5,4.0,4.5,5.0. The resulting exponents are
shown in Fig. 5. Despite the rather large fluctuations we can
trust that there is no systematic dependence on the initial
temperature. We conclude that the exponent values do not
depend on the previous history but they do on the relaxation
conditions.
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FIG. 5. (Color online) Exponents obtained from a logarithmic fit
of the roughness relaxation of the elastic string for fixed working
temperature 7=0.5 and different initial conditions T. (a) a;, expo-
nent and (b) barrier exponent, . The dotted line indicates the sug-
gested ¢=1/2 and =1/3 values. The error bars were estimated
from the dispersion of the exponents when changing the fitting
range.

4. Growing length: Preasymptotic power law at finite t,,

When the waiting-time dependence is considered, the
logarithmic growth is no longer easily observed. On the one
hand, the crossover between the two asymptotic limits, 7,
<At and 1,>Ar, makes it difficult to fit a logarithmic
growth. On the other hand, when the correlation length €
increases, the necessary time to reach the logarithmic regime
increases as t,~ T% (see Sec. V below). Thus, from a practi-
cal point of view, in the larger system size we are able to
simulate, the logarithmic regime is not reached. One can then
use a power-law growth of the roughness as an effective
description keeping in mind that the corresponding expo-
nents to be used would also take effective values. We shall
use such a power law to analyze the aging behavior of the
roughness in Sec. IV A.

In this case, the best option to extract the dynamic grow-
ing length €(z) is to take a very long t,, and study the break-
ing point g, ~ 1/4 in the structure factor. This breaking point
separates the modes keeping the memory of the initial con-
dition, ¢ <<gq,, from the equilibrated modes described by the
power-law regime with disorder exponent, g> ¢,. In the case
of a power-law scaling, 7~ L?, one has

q,~ Ar'” (28)

and from here one obtains z. Using power-law fits we find
that the growth and dynamic exponents, « and z, acquire a T
dependence in the presence of quenched disorder'?>"!> while
the roughness exponents {7, do not depend on temperature.

IV. AVERAGED AGING DYNAMICS

In this section we analyze the two-time evolution of quan-
tities that are averaged over many realizations of the thermal
noise and quenched disorder. We consider two types of
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FIG. 6. (Color online) Panel (a): the noise and disorder averaged
two-time roughness of the lattice elastic line with length L=500
evolving at 7=5,0.5,0.2 after a quench from infinite temperature,
Ty— <. Panel (b): scaling plot of the averaged two-time roughness
of the line with L=500 and 7=0.2 and the line with L=5000 and
T=0.5.

preparation: cooling from a higher temperature and heating
from zero temperature. We discuss how the initial condition
affects the behavior in the preasymptotic growth regime.

A. Two-time roughness

The analysis of the averaged two-time roughness of a
very long line described by the solid-on-solid model follow-
ing a quench from infinite temperature was given in Refs.
12—-15. We summarize here these results and we complement
them by showing that (i) a similar scaling form describes the
relaxation dynamics of the disordered EW line, (ii) the dy-
namics after heating up the lines can also be described by the
same scaling form with parameters that depend on the work-
ing and initial temperature, and (iii) the qualitative behavior
is similar to the one found analytically for the clean EW!8:19
and numerically for the clean KPZ?® lines.

The time-difference dependence of the averaged rough-
ness evolving from an infinite temperature initial condition
in the SOS model, for several waiting times and at three
working temperatures, is shown in Fig. 6(a). The averaged
roughness of the line evolving at high temperature, 7=5, is
stationary. It grows as the clean EW roughness, (w?) ~ At'"/2,
and it reaches saturation at (w>) after Az>r,. The line with
L=500 evolving at 7=0.5 is not stationary but signs of satu-
ration are visible at Az~ 10% MCs. The line evolving at low
temperature, 7=0.2, shows aging effects, is still in the
growth regime, and does not reach saturation in the numeri-
cal time window.
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The averaged roughness curves in the growth regime can
be well described by the scaling in Eq. (19). The numerical
analysis of the growing length €(¢) in the time window we
can reach indicates that €(r)~r"?. As discussed in Sec.
III B 3 this power-law regime should be considered as a
preasymptotic approximation to a slower logarithmic growth.
We shall continue our analysis restricting to the power-law
regime.

The resulting #/t,-dependent factor (w?) [see Eq. (19)]
can be well acquainted for by the empiric form'>

[ £
<W2>< o(t,)

G(x) ~ x> DA(T, Ty) 1087 T8 T-To)

) =(G(x) with x= A1,

g, T,Ty) = tanh{C(T, TO)loglo(ﬁ> ] . (29)
)

Equations (19) and (29) have the stationary limits,

) ~ coT,THAPD | Ar<t, (30)
co(T, T)AP D, Ar>1,,
with
co(T,Ty) = A(T,Ty) 1075010,
(T, To) = A(T, To) 1057 T0), (31)

These parameters control the two stationary asymptotes
bounding the aging regime. The parameter 2B(T,T,)
=logolcoo(T,To)/ co(T,Ty)] is then a measure of the distance
between the two asymptotes.

Figure 6(b) shows the scaling plot of the averaged rough-
ness in the growth regime. We display data for L=5000 at
T=0.5 and L=500 at 7=0.2. Note that the data for L=500 at
T=0.5 shown in panel (a) of Fig. 6 would have not scaled
properly since saturation appears earlier.

The temperature dependences of the (effective) growth
exponent « as well as the parameter B for the solid-on-solid
model evolving from an infinite temperature initial condition
are shown in Fig. 7. The exponent a approaches the EW
value 2a=1/2 at high temperature. In the high-temperature
limit the parameter B(T,%) approaches zero since the two
constants ¢o(7,%) and c,(T,») tend to the same
temperature-independent value and aging disappears.

Figure 8 shows the averaged two-time roughness for the
continuous model with a high initial temperature 7,=5. The
upper curve in Fig. 8(a) corresponds to the stationary case
where the temperature is kept constant at the initial value.
The other two cases, with T=1 and 7=0.5, present aging
which is qualitatively similar to the SOS model of Fig. 6.
Figure 8(b) shows the scaling of these curves with the
temperature-dependent exponents « given in the key. In the
continuous model the exponent « increases with temperature
until reaching the EW value 2a=1/2 at the crossover tem-
perature T.,(L). In Fig. 9(a) we present a(T) for the cases
with a fixed initial temperature 7=5. As can be observed, its
precise temperature dependence is not easy to determine.
Since one expects that the a exponent determines the slow
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FIG. 7. (Color online) Temperature dependence of the effective
growth exponent « and the parameter B measuring the distance
between the two asymptotes ¢, and c.. in the lattice model evolving
from an infinite temperature initial condition.

dynamics at a given temperature, it is interesting to check
that the value of « at a small temperature does not depend on
the initial temperature. This is shown in Fig. 9(b), where we
show that @(7=0.5) is independent of the initial temperature.
Although we do not compute the parameter B for the con-
tinuous model, it is worth noting that in contrast with the
discrete case the two constants ¢y and c, approach a
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FIG. 8. (Color online) The averaged two-time roughness in the
continuous model after a quench from high temperature T=5. (a)
L=256 and different temperatures. The upper curve corresponds to
the evolution of the roughness when the temperature is the same as
the initial value, i.e., a stationary situation. Curves for 7=1 (middle
curves) and 7=0.5 (lower curves) are shown. The waiting times are
t,,=100, 300, 1000, and 3000 from left to right. (b) Scaling plot of
the data presented for 7=1.0 and 7=0.5 using the « values given in
the figure.
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FIG. 9. Initial and working temperature dependence of the scal-
ing exponent « in the continuous EW model in a random environ-
ment. (a) The initial temperature is fixed to Ty=>5 and the working
temperature is varied. (b) The exponent « does not change while
changing the initial temperature 7y and keeping the working tem-
perature fixed at 7=0.5.

temperature-dependent asymptote that equals the high-
temperature limit of the EW line, ¢(o 2T and c,,* (2—+2)T
+\2T,.'"® The exponent a monotonically increases from
a(T=0)=0 and crosses over to 2a=1/2 at some T,,(L) with
a very weak T dependence.

The effect of using as an initial configuration one in equi-
librium at a lower temperature was considered analytically in
Ref. 18 for the EW line. In presence of disorder one is often
forced to use numerical simulations and the difficulty of
equilibrating a long line at low temperature arises. However,
a special case is that of the lattice model at 7,=0. It is indeed
well known that its ground state configuration can be exactly
calculated by transfer-matrix methods.?®

In Fig. 10 we show the two-time roughness of the discrete
disordered line using as initial configurations equilibrium
ones at T,=0 and a working temperature 7=0.2. The plots
demonstrate that the trend of the curves is to reverse in the
sense that the curves go from the upper to the lower asymp-
tote. This behavior is similar to what was found analytically
for the clean EW line'® and the KPZ nonlinear model.?° This
effect is also reminiscent of what was observed in the relax-
ation of the 2d XY model from a uniform initial condition,
corresponding to equilibrium at T,=0, at finite (higher) tem-
perature within the spin-wave approximation.’’

The effect of the initial condition can be summarized in
the following way. At all working temperatures that are iden-
tical to the one of the initial condition, 7=T7),, one finds ¢
=c, and there is no aging since the line is initially in
equilibrium.'® For 7> T, one has c¢,> c.., while for T<T,
one has ¢y<c.. The values of these constants determine the
relative location of the two asymptotes of the growth regime,
At<t,, and Ar>t,,.

B. Linear response

We now turn to the study of the linear response. In Fig. 11
we show the averaged integrated linear response of the
roughness in the lattice model. In panel (a) we show data for
several waiting times as a function of time delay. In panel (b)
we scale the data as

€
Ott) ~ 62€<rw><)z>(%> (32)

with €(r) ~ 'z,
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FIG. 10. (Color online) Panel (a): the averaged two-time rough-
ness in the lattice model for an elastic line with length L=5000.
Evolution at 7=0.2 after a sudden heating from equilibrium at T
=0. The waiting times are #,,=10 (plus, red), 7,,= 10> (cross, green),
t,,=103 (star, blue), 7,,=10* (open square, pink), and 7,,=10° (filled
square, cyan). Panel (b): scaling plot of the data in panel (a). Note
that the value of « (in the key) coincides with the one used in the
case of a quench to T from Ty— o (see Fig. 6). The dashed lines are
the bounding asymptotes. Let us remark that, here, ¢, <c.

These results are to be confronted with the behavior of the
EW elastic line with Langevin dynamics for which the inte-
grated linear response is stationary and does not fluctuate.'®
On the other hand, the linear response obtained with the
continuous model, not shown here, is qualitatively similar to
the one shown for the SOS model in Fig. 11.

In Fig. 12 we display data for the linear response after the
sudden heating from the ground state used in Sec. IV A. The
effect of this “reversed” heating procedure is similar to the
one showed in Sec. IV A and in Fig. 10 for the roughness.

C. FDT

The modification of the FDT linking the displacement to
its associated response in the lattice model after a quench
from infinite temperature was studied by Barrat'> and
Yoshino.!>!* We here focus on the behavior of the roughness
and its linear response. We show data for the disordered EW
line after a similar quench. In Fig. 13 we show the plot ()
against (W) at fixed #,, and using At as a parameter going
from Ar=0 to At— o in the continuous disordered EW line
for the cases Ty=5 and 7=0.5. As it can be observed, it
displays two slopes, allowing for the definition of an effec-
tive temperature.” A similar behavior was reported for the
displacement and associated linear response in the lattice
model,'3 the clean EW line,'® and the vortex glass model.®
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FIG. 11. (Color online) The noise and disordered averaged in-
tegrated linear response associated to the two-time roughness of the
lattice elastic line. Panel (a): the line with length L=500 evolving at
7=5,0.5,0.2 after a quench from infinite temperature, 7(— .
Panel (b): scaling plot of the averaged two-time linear response of
the line with L=500 and 7=0.2 and the line with L=5000 and T
=0.5.

The temperature dependence of the effective temperature
is shown in Fig. 14 for the disorder and the clean case. The
dependence of T, on the working temperature while keep-
ing T, fixed is shown in Fig. 14(a), but it is difficult to assess
whether the effective temperature is constant or slowly
grows with 7. Without disorder the EW solution gives a lin-
car dependence T.u=T/\2+Ty(1+1/v2),'8 shown with
dashed lines in the figure. When the working temperature is
fixed at 7=0.5 and the initial temperature is changed, T
grows linearly with Tj, as shown in Fig. 14(b) and in the
clean limit.

We also studied the effect of a heating procedure on the
violations of the FDT using the lattice model. We show in
Fig. 15 the parametric plot (¥) against (#?>) using as initial
condition the ground state at 7=0. As already found in the
clean EW line we find that T;<<T. T, thus reflects, consis-
tently, a “memory” of the initial configuration.

V. CROSSOVER-INDUCED GEOMETRICAL AND
DYNAMICAL EFFECTS

We discuss here how our numerical results can be ex-
plained by developing simple scaling arguments based on the
existence of a single dynamic crossover in the growing cor-
relation length at a static temperature-dependent length L,
from a thermally dominated regime to a disorder-dominated
regime with algebraically growing barriers as a function of

100 . .
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FIG. 12. (Color online) Panel (a): the averaged integrated linear
response associated to the two-time roughness in the lattice model
for an elastic line with L=5000. Evolution at 7=0.2 after a sudden
heating from equilibrium at 7,=0. The waiting times and symbols
are as in Fig. 10. Panel (b): scaling plot of the data in (a). Note that
the value of « (in the key) coincides with the one found in the study
of (w?) and the one used in the case of a quench to T from T,
— oo (see Figs. 6 and 10). The dashed lines are the bounding as-
ymptotes. Let us remark that, here, ¢, <c.

the length scale. The main additional assumption that we
make is that at large enough length scales € > L, the geom-
etry and typical barriers controlling the dynamics are indis-
tinguishable from those at zero temperature. With these hy-
potheses, which are qualitatively supported by our numerical
results, we can predict (i) the temperature dependence of Ly,
(ii) the temperature dependence of the effective exponents
characterizing each regime of growth, (iii) the temperature
dependence of the crossover time between these regimes,
and (iv) a parameter quantifying the importance of

4 T T T
3 FDT =~
=2 2= 10.1801
1 F
O 1 1 1
0 1 2 3 4

FIG. 13. (Color online) The parametric plot of the scaled linear
response against the roughness for the continuous model with T
=5 and 7=0.5. The dashed line indicates the FDT limit.
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FIG. 14. (Color online) Temperature dependence of the effective
temperature, signaling the violation of the FDT, comparing the
clean EW system—dashed lines—with the disordered continuous
case. (a) Dependence on the working temperature for a fixed initial
temperature T=5. (b) Dependence on the initial temperature T
while the working temperature is kept fixed at 7=0.5.

crossover-induced finite-size or finite-time effects in simula-
tions. In order to make the discussion in this section self-
contained we start by repeating some arguments that are well
known in the literature and then we present the scenario that,
we propose, explains the numerical observations.

If the temperature is high enough to renormalize the mi-
croscopic pinning parameters,”® thermal fluctuations domi-
nate the line wandering at short length scales. The geometry
of equilibrated small scales, € <L, is thus described by the
thermal roughness exponent {;=1/2 of the clean EW equa-
tion, such that (W?)~(T/c)f for €/L;y<1 or S(q)
~(T/c)g™"*24D for gqL;>1 or q>qr~1/Ly. The typical
time needed to equilibrate a length € in this regime is there-
fore expected to be #(£) ~ €%, with the EW dynamical expo-
nent z=2.

At length scales € > Ly, disorder dominates and the geom-
etry of the equilibrated large length scales, €> Ly, is the
same as in the ground state, S(g) ~ ¢~ 1*2%) for gL,<< 1, with
{p=2/3>{r. The typical time to equilibrate a length ¢
> L, is controlled by size-dependent energy barriers U({),
such that 1(£) ~eY 97 with U(£)~€*>T. By hypothesis,
we assume that both the form of S(g) and the barriers U({)
are independent of T in this regime, in agreement with what
is seen in Fig. 1 for the structure factor with g <<g.

In order to capture the crossover effects we interpolate the
geometric and dynamic behaviors of the regimes € > L and
€ <Ly described above. The static structure factor can be
written as

0.4 T T T T T

031 2a =0.145

01 P ]
O e 1 1 1 1 1

0 005 0.1 015 0.2 025 0.3
(@?)

FIG. 15. (Color online) The parametric plot 27(¥) against (i>)
after a heating procedure from the ground state at 7,=0 to 7=0.2 in
the SOS model. The waiting times are 10 MCs (plus, red), 10> MCs
(cross, green), 10> MCs (star, blue), 10* MCs (open square, pink)
and 10° MCs (filled square, cyan). Note that To;<<T.
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S(q.7) ~ g~1**Pg(gLy, T) (33)

with g(x,T)~Tx*~) for x>1 and g(x,T)~ const for x
< 1. This interpolating form, which includes the temperature,
is found to fit well the data and to satisfy our assumption
S(q,T)=S(q,T=0) for gL<<1. We continuously match the
two regimes by requiring g;!'*2?)=T4;1*%¢") and, therefore,

Ly~T"=1, (34)

with ¢=2({p—¢;)=1/3, which is the temperature depen-
dence of the crossover length we observe in Fig. 2. This
argument was also discussed in Sec. III B 2 on numerical
grounds, where references were also given.

Let us now discuss the dynamical behavior induced by L;.
At the crossover we can roughly set U(Ly) ~ T since barriers
start to dominate the dynamics only above L. For €> L we
expect U(€) ~€¥>T. To interpolate the large scale behavior
down to Ly we use?®

U() ~ T(E/Ly)Y. (33)

Since by hypothesis U(¢,T) = U(¢,T=0) for {> L, we ob-
tain = p=2({p—¢y). It is worth noting here that this result
relates dynamics and statics since 0=2{,—-1=2({p—-{y) is
also the static exponent describing the sample-to-sample
equilibrium free-energy fluctuations. This analysis thus sug-
gests that = ¢~ 0=1/3.

Using the previous arguments, the time to equilibrate a
length € can hence be written as

1(€) ~ YLDz, (36)

This expression continuously matches the barrier-dominated
regime, t~exp[(£/Ly)"]=exp[€?/T] for €>L;, with the
power-law growth expected in the thermal regime, ¢t~ €% for
¢ < L;. From Eq. (36) and using L;~ T"'¢ one obtains a char-
acteristic time scale,

ty ~ Lim T/ = T°, (37)

separating thermally from disorder-dominated dynamics.
This strong temperature dependence explains why the cross-
over to the slow logarithmic growth is particularly difficult to
observe in numerical simulations. On the one hand, at high
temperature, the line size must be large L>L;~ T° in order
to see the crossover to the long-time logarithmic regime. On
the other hand, at low temperature, the lines could in prin-
ciple cross over to the logarithmic regime even for small
system sizes but, because of the very slow Arrhenius acti-
vated dynamics, exceedingly long running times would be
needed to resolve the precise time dependence. Most impor-
tantly, the data from any numerical simulation displaying the
two regimes of growth will be characterized by temperature-
dependent effective exponents due to crossover-induced
finite-size and finite-time effects, as we explain below.

Indeed, Eq. (36) allows us to explain the temperature de-
pendence in the effective exponents of the power-law and
logarithmic growth regimes. The influence of the crossover
in the effective dynamic exponent 7 of the power-law regime
relevant to short length scales, € <L, follows from equating
Eq. (36) to t(£) ~ €%, which yields
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_ (€%/1n €) _ (zt¥/1n 1)
Ly Ly

(38)

To avoid solving the resulting self-consistent equation, we
can use =z in the third member to obtain a first-order cor-
rection to the dynamic exponent,

2"/n ¢
_ ") )
Ly
Since by construction the power-law fit of the data is done in
a relatively short time-scale such that ¥/In ¢ is almost con-

stant (otherwise Z would not be well defined) and by using
Ly~T3 and ¢=1/3, we get

7-2=T7" (40)

This rough estimate is in good agreement with the numeri-
cally determined exponent a shown in Figs. 7 and 9.

It is worth noting here that the Cardy-Ostlund random
Sine-Gordon model® in d=2, disordered ferromagnets,*” and
Ising and vector spin glasses®' were shown to display a dy-
namic exponent z~2+a/T, with a of the order of unity and
depending on details of the considered model. Our argu-
ments and numerical study show that the numerically mea-
sured dynamic exponent in our system could simply be an
effective value that stems from the interpolation of two
growth regimes that cannot be properly resolved numerically.
We cannot, however, directly apply the same arguments to
explain the similar behavior of the dynamic exponent in the
above systems. On one hand, the Cardy-Ostlund model in
d=2 has, in the pinned phase, =0 (i.e., the glass phase is
marginal), so if ¢/~ =0 is true in this system, the growth of
barriers is strictly logarithmic?® rather than the algebraic
growth we are assuming in our arguments. On the other
hand, disordered ferromagnets such as analyzed in Ref. 30 or
vector spin glasses®! are strongly disordered systems, and it
is therefore not obvious how to relate their behavior with the
one of a (weakly pinned) directed elastic manifolds with one
transverse direction such as the 1+1 elastic string we study
or the 2+1 elastic interface of the d=2 Cardy-Ostlund
model, which can be described by the d-dimensional gener-
alization of Eq. (1). Moreover, we are not aware of the ob-
servation in these systems of a geometrical crossover from a
thermally dominated to a disorder-dominated length-scale re-
gime, which is a necessary input in our arguments. It seems
that our arguments are particularly important for systems
with a positive barrier exponent ¢ displaying a crossover
from a thermally dominated short-time regime where the cor-
relation length grows as a power law, to a long-time dynam-
ics dominated by algebraically diverging energetic barriers,
with a logarithmically growing correlation length. This could
be realized in disordered ferromagnets or other system dis-
playing well-defined domain walls in the weak disorder
limit. Why the crossover-induced effective exponents we
found appear to be quite similar to the one found in a true
marginal glass phase or in some spin glass model is an in-
teresting open question though.

PHYSICAL REVIEW B 80, 094201 (2009)

The seemingly paradoxical temperature dependence of the
effective exponent in the regime of logarithmic growth, €
> Ly, shown in Fig. 4, can be explained with a similar argu-

ment. By equating Eq. (36) to #({) ~exp[£¥/T] we find

~  In[T/LY+TIn £/€"]

- In ¢ “1)

We use now Ly~T? and the time dependence ¢
~(TIn )" in the second member to get a self-consistent
equation for (Z namely,

- " Tz In(TIn 1)
-y T t)ln{1+ J—(Tln z)W]' (42)

Setting 1}% ¢ in the second member we obtain a first-order
approximation for IZ— o,

(43)

iy £]n(T1nt)]

S TIIE
In(T In 1) ¢ Int

At high temperatures (or large times) such that 7' In > 1 this

expression simply yields 17/~ . In the opposite low 7' limit
for sufficiently large length/time scales such that the restric-

tion €(£)>L;~ T? is still satisfied one finds ¢ > . Indeed, ¢
is a decreasing function of 7. These argument is consistent

with the result shown in Fig. 4, where we observe that (Z

> ¢ at low temperatures and lZ—> =1/3 increasing the tem-
perature.

The effective exponent analysis made above reveals that
crossover-induced effects are controlled by the order of mag-
nitude of €%/1n €. Since € in a simulation is always a fraction
of the system size L, a temperature dependence of the effec-
tive exponents can be expected for systems such that
LY3/In L~ O(1). For instance, in order to properly resolve
the dynamic exponent z=2 at short length scales we need
€ <Ly for at least a few orders of magnitude range of €, i.e.,
a large Ly. On the other hand, to properly resolve the expo-
nent ¢ we need €'3/1n ¢> 1 for L> > Ly for at least a few
orders of magnitude of €. Typically, the largest systems ana-
lyzed numerically in the literature have L~ O(10°), with
L'3/In L~ O(1), and do not satisfy the latter constraint. This
clearly prompts for a careful interpretation of the anomalous
temperature dependence of power-law or logarithmic growth
exponents obtained numerically so far, as we discuss below.

In Ref. 13 the aging dynamics of an elastic string was
numerically studied, by Monte Carlo simulation of a solid-
on-solid model, for a line of size L=500. In this work the
dynamics of the Fourier mode with zero wave vector was
found to display a clear crossover from linear to nonlinear
response, compatible with a power-law growth of barriers at
large times and a crossover from power-law to logarithmic
growth of the correlation length. However, the data for the
relaxation of nonzero Fourier modes were analyzed in terms
of an algebraically growing correlation length, arguing that a
logarithmic law should be inaccurate since it is based in the
hypothetic existence of a typical energy barrier. From the
above analysis, this intriguing result can be explained by
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taking into account that L=500 is still too small to avoid
crossover-induced effects. Indeed, the temperature depen-
dence of the dynamic exponent described here is compatible
with our prediction for an effective dynamic exponent. We
are thus not forced to abandon the simple interpretation in
terms of a typical barrier growing algebraically with the
length scale if we take into account the importance of
crossover-induced effects in small systems.

In Ref. 34 the relaxation of an elastic line in a disordered
potential was analyzed for the particular case #,=0 and T
=0.5. The crossover to the logarithmic growth was observed,

though with an effective exponent 1220.49> 6. In Ref. 36
scaling arguments for the free energy of droplet excitations
were given favoring the value ¢=1/2, against the commonly
accepted value ¢=6=1/3,?® in apparent agreement with the

results in Ref. 34. In the present work we find not only o
~0.51 for t,,=0 and T=0.5, consistent with the result in Ref.
34, but also a decrease toward a value close to ¥=1/3 with
temperature. This behavior is opposite to what is proposed in
Ref. 36, where entropic effects leading to the value ¢=1/2
are expected to grow with 7 from the 7=0 value =46
=1/3 to the entropically driven value =1/2. The scaling
arguments given above thus show that the anomalous tem-

perature dependence of IZ can still be interpreted without
dropping the =6=1/3 identification, which was proposed
some time ago.

In numerical simulations of the steady-state slow driven
motion of an elastic line’® the effective creep exponent u
was found to be temperature dependent. According to the
assumption U(€) ~ € at large length scales, simple scaling
arguments lead to w=6/(2—{p)=1/4 (see, for instance, Ref.
39). Taking into account that L'3/In L~ O(1) in those simu-
lations we can expect, following an equivalent line of rea-
soning as above, a temperature-dependent effective creep ex-

ponent =/ (2—{p)> u, such that Z— u when T grows.
This behavior is in good qualitative agreement with the re-
sults in Ref. 38. Therefore, the anomalous temperature de-
pendence observed in Ref. 38 cannot be used as evidence
against obtaining the creep exponent entirely as a function of
static exponents, although the large-scale geometry in the
creep regime is found to be described by depinning
exponents.38’40

VI. CONCLUSIONS

Elastic manifolds are objects that appear in a large variety
of problems with glassy features. It was shown in the past
that these systems present aspects of glassy dynamics com-
bined with diffusion properties.®!1-13-18-20

After a series of analytic and numerical studies of con-
tinuous and discrete models with and without quenched dis-
order we can summarize the main features of the out of equi-
librium relaxation of individual and interacting directed one-
dimensional objects.

All these systems age below a characteristic temperature
T.,(L). In the mean-field limit of an infinite number of trans-
verse dimensions, for a line with infinite length, a dynamic
phase transition arises at T,,(L). Below T,,(L) the lines age
without diffusion."

PHYSICAL REVIEW B 80, 094201 (2009)

The dynamics of finite length lines moving in finite di-
mensional spaces cross over from diffusive-aging growth to
a regime in which the roughness saturates. This phenomenon
can be described with a generalization of the Family-Vicsek
scaling.>!® The qualitative features of the two-time freely
relaxing observables are generic and do not depend on the
presence of quenched randomness but the details such as the
exponents and growing length do. We performed a careful
analysis of the time-dependent growing length and we found
a crossover from an effective power law with temperature-
dependent exponent to the expected asymptotic logarithmic
growth for sufficiently long strings. Our numerical data indi-
cate a temperature-dependent effective barrier exponent 12,
which is higher than the energy exponent §=1/3 at low tem-
peratures but tends to it at high temperatures, provided the
system is large enough to display the asymptotic behavior.
As we discussed via scaling arguments this behavior can be
recast in terms of crossover-induced effects, and it is not
inconsistent with the usual assumption =6 for this system.

We also found a single crossover length Ly~ T3 separat-
ing a thermally dominated regime with (7=1/2 and a
disorder-dominated regime with the 7=0 roughness expo-
nent {p=2/3. We showed that this is consistent with the
assumption that large scale properties of the system are in-
distinguishable from those at 7=0. Translating this crossover
into the dynamics we could also describe the temperature
dependence of the effective dynamic exponents in the power-
law growth regime and in the logarithmic growth regime. In
this respect it would be important to study the corresponding
crossover in (1+2) dimensions, relevant for vortices in su-
perconductors. This is crucial for high-T,. superconductors
where thermal fluctuations are known to strongly renormal-
ize the disorder and produce Larkin lengths growing expo-
nentially fast with temperature.> As the Larkin length marks
the onset of metastability and the crossover to a barrier-
dominated (random-manifold) regime, as it does Ly in our
case, we can expect the phenomenology and crossover-
induced effects we describe here to be experimentally rel-
evant, especially at the onset of irreversibility, near the tran-
sition to the vortex liquid phase,® where the Larkin length
can become comparable with the sample size.*!

The importance of measuring linear responses was dem-
onstrated by the fact that all known coarsening systems
(above their lower critical dimension) have an asymptotically
vanishing linear response in the aging regime, in contrast to
solvable mean-field glassy models and numerical simulations
of finite dimensional glasses that yield a finite integrated
linear response in the same two-time regime (see, e.g., Refs.
8 and 42). This fact appears as a concrete difference between
the relaxation dynamics of coarsening and glassy systems.

The relaxation of the integrated thermal averaged linear
response of elastic manifolds strongly depends on the pres-
ence or absence of quenched disorder. Mean-field elastic
manifold models in quenched random environments have a
fully aging linear response. The clean EW line has a station-
ary linear response, while the dirty continuous or lattice
models have integrated linear responses with aging and dif-
fusion combined.

The effective temperature’ defined from the comparison
of induced and spontaneous averaged fluctuations is finite in
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all the cases considered as long as the diffusive factors in the
correlations and linear responses are divided away. We also
showed that the effective temperature is higher than the bath
temperature for cooling procedures and, inversely, it is lower
than the bath temperature for heating procedures. This is
similar to what has been previously found in the 2d XY
model?” and the Edwards-Wilkinson elastic line'® and gives
support to the notion of effective temperature as measured
from deviations from the fluctuation-dissipation relation.
The study of dynamic fluctuations in these systems has
not been fully developed yet. In Ref. 15 we analyzed the
fluctuations of the two-time roughness of the lattice disor-
dered model during growth. The equilibrium* and out of
equilibrium'® roughness fluctuations in the EW line show a
similar pattern. The probability distribution functions in all
these models satisfy a scaling law and the scaling function
follows the same trend as a function of all its variables. The
question then arises as to whether the fluctuations of the
linear responses of clean and disordered elastic lines are
similar or different. We shall discuss this problem in a sepa-

PHYSICAL REVIEW B 80, 094201 (2009)

rate publication. The relation with the theory of fluctuations
based on time-reparametrization invariance** will also be
discussed elsewhere.
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